Specific mutagenesis of the rieske iron-sulfur protein in Rhodobacter sphaeroides shows that both the thermodynamic gradient and the pK of the oxidized form determine the rate of quinol oxidation by the bc(1) complex.

نویسندگان

  • M Guergova-Kuras
  • R Kuras
  • N Ugulava
  • I Hadad
  • A R Crofts
چکیده

In the Rieske iron-sulfur protein (ISP) of the ubiquinol:cytochrome c(2) oxidoreductase (bc(1) complex) of Rhodobacter sphaeroides, residue Tyr 156 is located close to the iron-sulfur cluster. Previous studies of the equivalent residue in both Saccharomyces cerevisiae [Denke, E., Merbitz-Zahradnik, T., Hatzfeld, O. M., Snyder, C. H., Link, T. A., and Trumpower, B. L. (1998) J. Biol. Chem. 273, 9085-9093] and Paracoccus denitrificans [Schroter, T., Hatzfeld, O. M., Gemeinhardt, S., Korn, M., Friedrich, T., Ludwig, B. , and Link, T. A. (1998) Eur. J. Biochem. 255, 100-106] have indicated that mutations at this site can lead to modifications in the redox potential of the ISP. To study the effect of similar modifications on the thermodynamic behavior and kinetics of partial reactions of the bc(1) complex upon flash activation, we have constructed four mutant strains of Rb. sphaeroides where Tyr 156 was mutated to His, Leu, Phe, or Trp. The bc(1) complex was assembled and able to support photosynthetic growth in all mutants. Three substitutions (Leu, Phe, Trp) led to alteration of the midpoint potential (E(m)) of the ISP and a slowing in rate of quinol oxidation, suggesting that electron transfer from quinol to the oxidized ISP controls the overall rate and that this step includes the high activation barrier. The Trp mutation led to an increase of approximately 1 pH unit in the pK value of the oxidized ISP. The pH dependence of the rate of quinol oxidation in this mutant was also shifted up by approximately 1 pH unit, showing the importance of the protonation state of the ISP for quinol oxidation. This provides support for a model in which the dissociated form of the oxidized ISP is required for formation of the enzyme-substrate complex [Ugulava, N., and Crofts, A. R. (1998) FEBS Lett. 440, 409-413].

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CD-monitored redox titration of the Rieske Fe-S protein of Rhodobacter sphaeroides: pH dependence of the midpoint potential in isolated bc1 complex and in membranes.

The redox potential of the Rieske Fe-S protein has been investigated using circular dichroism (CD)-spectroscopy. The CD features characteristic of the purified bc1 complex and membranes of Rhodobacter sphaeroides were found in the region between 450 and 550 nm. The difference between reduced and oxidized CD-spectra shows a negative band at about 500 nm with a half of width 30 nm that correspond...

متن کامل

Photoinduced electron transfer between the Rieske iron-sulfur protein and cytochrome c(1) in the Rhodobacter sphaeroides cytochrome bc(1) complex. Effects of pH, temperature, and driving force.

Electron transfer from the Rieske iron-sulfur protein to cytochrome c(1) (cyt c(1)) in the Rhodobacter sphaeroides cytochrome bc(1) complex was studied using a ruthenium dimer complex, Ru(2)D. Laser flash photolysis of a solution containing reduced cyt bc(1), Ru(2)D, and a sacrificial electron acceptor results in oxidation of cyt c(1) within 1 micros, followed by electron transfer from the iron...

متن کامل

Elimination of the disulfide bridge in the Rieske iron-sulfur protein allows assembly of the [2Fe-2S] cluster into the Rieske protein but damages the ubiquinol oxidation site in the cytochrome bc1 complex.

The [2Fe-2S] cluster of the Rieske iron-sulfur protein is held between two loops of the protein that are connected by a disulfide bridge. We have replaced the two cysteines that form the disulfide bridge in the Rieske protein of Saccharomyces cerevisiae with tyrosine and leucine, and tyrosine and valine, to evaluate the effects of the disulfide bridge on assembly, stability, and thermodynamic p...

متن کامل

The energy landscape for ubihydroquinone oxidation at the Q(o) site of the bc(1) complex in Rhodobacter sphaeroides.

Activation energies for partial reactions involved in oxidation of quinol by the bc(1) complex were independent of pH in the range 5. 5-8.9. Formation of enzyme-substrate complex required two substrates, ubihydroquinone binding from the lipid phase and the extrinsic domain of the iron-sulfur protein. The activation energy for ubihydroquinone oxidation was independent of the concentration of eit...

متن کامل

Pathways for proton release during ubihydroquinone oxidation by the bc(1) complex.

Quinol oxidation by the bc(1) complex of Rhodobacter sphaeroides occurs from an enzyme-substrate complex formed between quinol bound at the Q(o) site and the iron-sulfur protein (ISP) docked at an interface on cytochrome b. From the structure of the stigmatellin-containing mitochondrial complex, we suggest that hydrogen bonds to the two quinol hydroxyl groups, from Glu-272 of cytochrome b and H...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biochemistry

دوره 39 25  شماره 

صفحات  -

تاریخ انتشار 2000